Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression
نویسندگان
چکیده
Web stores, where buyers place orders over the Internet, have emerged to become a prevalent sales channel. In this research, we developed neural network models, which are known for their capability of modeling noncompensatory decision processes, to predict and explain consumer choice between web and traditional stores. We conducted an empirical survey for the study. Specifically, in the survey, the purchases of six distinct products from web stores were contrasted with the corresponding purchases from traditional stores. The respondents’ perceived attribute performance was then used to predict the customers’ channel choice between web and traditional stores. We have provided statistical evidence that neural networks significantly outperform logistic regression models for most of the surveyed products in terms of the predicting power. To gain more insights from the models, we have identified the factors that have significant impact on customers’ channel attitude through sensitivity analyses on the neural networks. The results indicate that the influential factors are different across product categories. The findings of the study offer a number of implications for channel management. D 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Comparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملA Comparative Approximate Economic Behavior Analysis Of Support Vector Machines And Neural Networks Models
متن کامل
Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
Background: Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods: This cross-sectional study was performed with 12000 ...
متن کاملCredit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks
The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...
متن کاملPredicting peak particle velocity by artificial neural networks and multivariate regression analysis - Sarcheshmeh copper mine, Kerman, Iran
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Decision Support Systems
دوره 41 شماره
صفحات -
تاریخ انتشار 2006